If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10p^2-75p+65=0
a = 10; b = -75; c = +65;
Δ = b2-4ac
Δ = -752-4·10·65
Δ = 3025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3025}=55$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-75)-55}{2*10}=\frac{20}{20} =1 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-75)+55}{2*10}=\frac{130}{20} =6+1/2 $
| 9.8x^2+29.4x+60=0 | | 9.8x+29.4x+60=0 | | 2x+11=5x-52 | | x=-61/2 | | 2250=5000*r*5 | | 5+r=9(–2r−10) | | .5x=x-9 | | (x)(x+8)=(6)(8) | | 4b=7=-1;2 | | 2x+9-x+3= | | 8-x=5;x= | | 2.9=v-6.3 | | 6a-4-8=18 | | 4=n8 | | 3x-4=(0.6x)-74 | | h=25+13.5h-0.25h | | (w-4/9)=(5/6) | | 76=x*13 | | Y=-18x^2+90x | | x+11=59 | | (w-4/9)=5/6 | | x-5=-84 | | x^2-81=x | | x^2-x=81 | | -2(x+1)=-2x-5 | | 8x1.6=12.8 | | (5n+3)(4n+5)=0 | | -60=-12q | | 8/3+x=5/3*x | | 7(4^x+3)=35 | | 45/t=12 | | 5x-1+3x+7=84 |